
Training Data Optimized and 
Conditioned to Learn Characteristic 
Patterns of Vibrating Blisks and Fan 
Blades
At the NASA Glenn Research Center, we have been training artificial neural networks to 
interpret the characteristic patterns (see the leftmost image) generated from electronic 
holograms of vibrating structures. These patterns not only visualize the vibration 
properties of structures, but small changes in the patterns can indicate structural changes, 
cracking, or damage (refs. 1 and 2). Neural networks detect these small changes well. Our 
objective has been to adapt the neural-network, electronic-holography combination for 
inspecting components in Glenn's Spin Rig.

This project has generated an excellent beginning for answering a very important question 
for NASA's growing involvement with intelligent systems: Given any technology or 
process such as an artificial neural network, how do you impose a useful intelligence on 
that technology in an optimum manner? Artificial neural networks are trained by example, 
using a so-called training set, and training-set-educated systems are popular in general. 
Optimum training means that the technology learns the training set quickly, learns to 
distinguish small, but significant, variations in the input patterns, learns to handle noisy 
data, does not overtrain (overfit the training data), and learns, consequently, to generalize 
(correctly interpret patterns not in the original training set). Electronic holography of 
structures is especially useful for testing approaches for training, since models can be used 
to generate statistically realistic, although far from perfect (ref. 3), training sets.



Left: Characteristic pattern or mode shape of a vibrating blade. Note that the laser 
speckle effect causes a large intensity fluctuation about the local average. Right: Finite-

element-resolution characteristic patterns before and after folding.

Two questions must be answered in preparing training data for any technology: How do 
you condition the data optimally for the particular technology, and how do you generate 
statistically optimum training sets in general? We have developed a technique called 
folding for conditioning characteristic patterns for optimum training of feedforward neural 
networks. For image processing using feedforward neural networks, the data are usually 
normalized so that each input node covers the same range. A common practice is to use a 
minimum-maximum table, where the data for each pixel are scaled into the range -1 to 1. 
Neural net-works trained in this way learn more quickly, but they are prone to overfit the 
data. Folding, by contrast, divides the data into intensity ranges, and it scales each range 
into the full input range of the neural network. The laser speckle effect (the noise covering 
the leftmost image) has a considerable variation about the average intensity, which ensures 
that all the positions on the image participate in all folding ranges, whereas the minimum-
maximum table imposes an image-position-dependent scaling. The folding-trained 
networks learn more quickly, are better able to distinguish between damaged and 
undamaged blades, and generalize better. The images to the right show a finite-element-
resolution node pattern for a blade vibrating in its first mode before and after folding. The 
graphs show the training and test errors as a function of the number of folds.

The discovery of hardware that can emulate intelligent behavior is expected to be 
fortuitous. The discovery of effective, if not optimum, training procedures for specific 
kinds of data will provide the practical challenge. Neural-network processing of speckled 
fringe patterns from vibrating structures provides an excellent theoretical and experimental 
testbed for this work.

Root mean square error as a function of the number of intensity folds in the neural net 
training patterns. Top: Training error. Bottom: Test error.
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